Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 107(5): 911-916, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34415366

RESUMO

The aims of the study were: (i) evaluate the efficacy of using amphibian adipose tissue as a valid biomarker of water contaminated by pyriproxyfen; and (ii) verify the use of Lithobates catesbeianus in laboratory experiments as a potential bioindicator for bioaccumulation of pesticide in adipose tissue from amphibians. Adult frogs were exposed to different dilutions (0.002 g/L and 0.02 g/L) of Sumilarv® (pyriproxyfen) over 50 days. The average results of the fortified sample were 108%, indicating that the test method was effective. Adult frogs exposed to the standard dose recommended by the World Health Organization (WHO) showed bioaccumulation of pyriproxyfen in adipose tissue significantly higher than control animals. Lithobates catesbeianus proved to be an effective bioindicator and the adipose tissue was an efficient biomarker to bioaccumulation of pyriproxyfen. We conclude that high-performance liquid chromatography-mass spectrometry was effective measuring pyriproxyfen bioaccumulation in adult amphibians.


Assuntos
Tecido Adiposo , Espectrometria de Massas em Tandem , Animais , Bioacumulação , Cromatografia Líquida de Alta Pressão , Piridinas , Rana catesbeiana
2.
Ecotoxicol Environ Saf ; 187: 109815, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677565

RESUMO

The 2,4,6-tribromophenol (TBP) is an environmental persistent pollutant widely used as flame retardant, antimicrobial and insecticide agent in wood preservation and plastic production. Currently, TBP is found in environmental compartments such as soil, freshwater, groundwater, sewage sludge and domestic dust, but the effects to biota and the risk of exposure to aquatic vertebrates are still scarce. In the present study, Rhamdia quelen fish embryos (8 h post-fertilization - hpf) were exposed to 0.3 and 3.0 µg L-1 of TBP until 96 hpf. Biochemical biomarkers, hatching, survival and larvae/embryo malformations were evaluated after exposure. Additionally, a mathematical model was proposed to evaluate the effects along further generations. The results showed that TBP decreased the survival level but did not cause significant difference in the hatching rates. After 72 and 96 hpf, individuals from the highest tested concentration group showed more severe malformations than individuals from control and the lower concentrations groups. The deformities were concentrated on the embryos facial region where the sensorial structures related to fish behavior are present. The biochemical biomarkers revealed both oxidative stress and neurotoxicity signs after exposure to the contaminant, while the application of the mathematical model showed a decrease of population in both tested TBP concentrations. In conclusion, the current results demonstrated that TBP is toxic to R. quelen embryos and represents a risk to population after early life stage exposure.


Assuntos
Peixes-Gato , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/efeitos dos fármacos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Peixes-Gato/anormalidades , Embrião não Mamífero/anormalidades , Feminino , Larva/crescimento & desenvolvimento , Masculino , Modelos Teóricos , América do Sul , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...